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                                 Abstract 

Antibiotic resistance is conferred through a large pool of genes, which is now 

referred to as the resistome. The appearance of the ever-changing structure of a 

cistron in the macromolecule together with the key factors of primary mutations, and 

evolution that translates the ability to grow in the presence of antibiotics to 

microorganism is creating a natural selection, causing those who are vulnerable to 

scale back in population whereas those who have the flexibility to grow in the 

presence of antibiotics to flourish. In addition, mechanisms of horizontal gene switch 

transfer among bacteria of the same species and interspecies have been involved in 

the distribution of antibiotic resistant genes amenable for unique mechanisms which 

allow them to overwhelm antibiotics found in their on-the-spot surroundings among 

other organisms. The most horrifying aspect of these resistance genes is that their 

components are frequently deployed into the microbic community, which affects 

humans, thanks to the involvement of genetic level which expeditiously assist the 

mobilization and maintenance of those resistant genes. These genes include those that 

impact linezolid methyltransferases (cfr), aminoglycoside ribosomal methylases 

(armA, rtmB), efflux pumps giving fluoroquinolone resistance (qepA), and biofilm 

resistance all of which are related to antimicrobial-producing bacteria. This work 

aims to reveal and discuss the various identified genetic mechanisms used by 

antibiotic-resistant bacteria. 

*Correspondence 

E-mail:  

radesola758@stu.ui.edu.ng 

Received 

January, 2022 

Accepted  

June, 2022 

Published  

June, 2022 

Copyright: ©2022 Genetics & 

Applications, The Official 

Publication of the Institute for 

Genetic Engineering and 

Biotechnology, University of 

Sarajevo 

 

 

 

Keywords 

Resistome, Antibiotics 

resistance, horizontal 

gene transfer, 

Resistance gene 

Institute for Genetic Engineering  
and Biotechnology  

University of Sarajevo 



www.genapp.ba                                                          Genetics&Applications Vol.6|No.1|June, 2022 

2 

 

Introduction 

Antimicrobial agents to treat and prevent 

infections have surely transformed modern 

medicine and aided in the general control of 

disease spread among humans and animals alike. 

Antibiotics have become one of the most 

significant therapeutic therapies wished for the 

advancement of sophisticated scientific methods 

such as disease treatment, current surgical 

techniques, strong organ transplantation, and 

cancer patient management, to name a few 

(Munita and Arias, 2016). The capacity for 

bacteria to develop antibiotic resistance (AR) via 

mutations or acquiring of resistance genes is 

increasingly jeopardizing illness cures. Antibiotic 

resistance genes could also be employed for 

bioterrorism by genetically modified organisms 

(Liu and Pop, 2009). Antimicrobial resistance 

(AMR) issues are affecting non-industrialized 

countries as well, where AR issues are more 

intriguing due to a deficiency of well-organized 

antibiotics use policies and the demand for the best 

hygienic situation and contagious disease control 

practices (Rossolini and Taller, 2010). 

Penicillin, a widely used antibiotic produced from 

a fungus called Penicillium notatum, was first 

introduced for usage in the 1940s (Harris et al., 

2002). Penicillin proved to be an effective 

antibiotic, reducing the occurrence and spread of 

illnesses as well as mortality caused by 

Staphylococcus aureus. Penicillin works by 

competing for protein binding locations on the 

bacterium, preventing the production of cell walls. 

Penicillin resistance was discovered in the late 

1940s when the enzyme penicillinase, which 

inactivates penicillin, was discovered (Harris et al., 

2002). To treat penicillin-resistant Staphylococcus 

aureus, methicillin was synthesized and introduced 

in 1959 (Halem et al., 2006). Methicillin-resistant 

Staphycoccus aureus (MRSA) was discovered in 

1961 at United Kingdom (Turner et al., 2019). 

MRSA infection is seen all throughout the world, 

however there is no one-on-one strain that can 

cause pandemic. Instead, MRSA tends to manifest 

itself in waves of infection, with the development 

of dominant strains occurring in a predictable 

order. There are two vancomycin-resistant strains 

of Staphylococcus aureus (vancomycin-

intermediate-resistant S. aureus (VISA) and 

termed vancomycin-resistant S. aureus (VRSA). In 

2002, the first vancomycin resistant S. aureus 

isolate was discovered in the United States (US) 

(Chang et al., 2003). There have been a total of 14 

isolates reported in the US since then (Walters et 

al., 2015). Fortunately, vancomycin-resistant S. 

aureus appears to be an uncommon occurrence, 

with only a few instance recorded to date (Dantes 

et al., 2013). 

Resistance to a collection of antibiotics, as well as 

macrolides, aminoglycosides, glycopeptides, 

fluoroquinolones, and tetracyclines, emerged over 

the years (Fair and Tor, 2014). Antimicrobial 

resistance (AMR) kills 700,000 people per annum 

around the globe, although by 2050, the number 

could reach 10 million. Antibiotic-resistant 

bacteria end an approximation 25,000 individuals 

in Europe each year (Prestinaci et al, 2015). 

According to the foundation's analysis, AR causes 

at least 2 million health problem and 23,000 deaths 

in the US each year (Dadgostar, 2109). New 

antibiotics are desperately required, but 

drugmakers have little motivation to develop them 

because they will be closely monitored after they 

reach the market to reduce the chance of resistance 

developing. Between 1985 and 1999, the number 

of new antibacterial medications licensed in the 

United States fell from 33 to 13 between 2000 and 

2014 (Dutescu and Hillier, 2021). For the health of 

millions of people around the world, governing 

agencies must assist an incentivization of the 

sector, writes AMR specialist Thomas Cueni. A 

bacterial infection is contracted by more than one 

in every five Americans hospitalized with COVID-

19. Those who survive the coronavirus may 

succumb to these not-so-new infections if they do 

not have access to good antibiotics. Advanced 

rates of AR often used to treat common bacterial 
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ailments, such as sepsis, sexually transmitted 

infections, urinary tract infections, and several 

forms of diarrhoea, have been registered 

worldwide, bespeak that we are short of effective 

antibiotics (Fair and Tor, 2014). In nations 

reporting to the Global Antimicrobial Resistance 

and Use Surveillance System (GLASS), for 

example, resistance to ciprofloxacin, an antibiotic 

usually used for treatment of urinary tract 

infections, ranged from 8.4% to 92.9% for E. coli 

and from 4.1% to 79.4% for K. pneumoniae (Reis, 

2016). 

Horizontal gene transfer is the exchange of genetic 

messages among organisms, a mechanism that 

fuels disease evolution by spreading antibiotic 

resistance genes throughout bacteria (excluding 

those passed down from parent to offspring). 

Many resistance genes evolved in natural habitats 

long before humans existed, but they are currently 

quickly spreading to and among human infections. 

The genetic description of AMR 

mechanisms/determinants in bacteria plays an 

essential role in the perception and eventual 

control of resistance (Archer et al., 2011). 

Microbial virulence mechanisms have evolved 

over millions of years to improve their adaptability 

to host defence systems. The global appearance 

and improvement of AMR, on the other hand, has 

only expedited in the last fifty years, since 

antibiotics were initial administered (Pan et al., 

2020). Traditional resistance mechanisms include 

efflux-based mechanisms that affect tetracyclines, 

acetylases (via acetylation process) that enhance 

chloramphenicol, aminoglycoside-modifying 

enzymes, and RNA methylases (via RNA 

methylation) that confer macrolide resistance, 

among others. The related resistance determining 

factor for these mechanisms can be established in 

herbal antibiotic-producing bacteria. With the 

discovery of novel genes that are resistance in 

these bacteria, this list has recently been expanded 

(Canto and Ramo, 2009). An overview of the 

common genetic mechanisms used by antibiotic-

resistant microbes to confer antimicrobial 

resistance will be discussed in this paper. 

Acetylation 

An essential cause of resistance in bacteria to 

antibiotics is the enzymatic acetylation of their 

amino groups by acetyltransferases, that get rid of 

their binding to and inhibition of the ribosome of 

bacteria. A 6'-N-acetylating enzyme that triggers 

amino glycosidic antibiotics has been observed in 

antimicrobial resistant strains of Pseudomonas 

aeruginosa (Chowdhury et al., 2011) and 

Escherichia coli (Benveniste and Davies. 1971). 

The plasmid-encoded N-acetyltransferases can act 

on in fact all clinically useful aminoglycosides and 

are obligated for the number of global clinical 

resistance to aminoglycosides in Gram-negative 

pathogenic bacteria (Matthew et al., 2004). A 

variety of special regioisozymes have been known, 

however, those that acetylate either the 3- or 6’- 

amino substituents are the most commonplace in 

aminoglycoside resistant scientific lines 

Aminoglycoside Resistance Study Groups (1995). 

Phosphorylation 

 

Protein posttranslational modifications (PTMs), 

especially phosphorylation, increase the 

complexness of cell regulatory networks 

substantially. Though cysteine (Cys) in a variety 

of proteins can be a concern to more than one 

PTMs, its phosphorylation was antecedently 

thought to be a rare PTM with little regulatory 

effect (Sun et al., 2012). Covalent posttranslational 

modification (PTM) of proteins significantly 

increases the coding capacity of 

prokaryotic/eukaryotic genomes, resulting in the 

production of a large number of different 

proteomes (Walsh et al., 2005). PTMs fine-tune 

protein functions in response to several signaling 

events by attaching specific chemical groups to 

amino acid residues in proteins, such as phosphate, 

 



www.genapp.ba                                                          Genetics&Applications Vol.6|No.1|June, 2022 

4 

 

acetate, lipids, and carbohydrates (Sun et al., 

2012). The most significant PTM in sign 

transduction is reversible protein phosphorylation, 

which is a central process to the law of almost 

every aspect of cell life, including growth, 

metabolism, motility, division, differentiation, 

organelle trafficking, and immunity in higher 

organisms, as well as memory and learning 

behaviors (Cohen, 2002). 

Cys-phosphorylation is essential for controlling 

the generation of virulence determinants and 

bacterial resistance to vancomycin. Antibiotics 

that target the cell wall, such as vancomycin and 

ceftriaxone, suppress Stk1's kinase activity, 

resulting in reduced Cys-phosphorylation of SarA 

and MgrA. The deletion of stp1, which causes 

increased protein Cys-phosphorylation, 

dramatically lowers staphylococcal virulence in an 

in vivo animal model of infection. According to 

these findings, Cys-phosphorylation is a special 

PTM that can play quintessential roles in bacterial 

signaling and regulation (Sun et al., 2012). 

Lin et al. (2018) confirmed for the first time that 

distinct phosphorylation motifs changed 

throughout resistance development. This is 

consistent with the theory that Thr/Ser/Tyr kinases 

in microorganisms play a role in resistance 

enhancement (Wright et al., 2014), which has been 

postulated but never thoroughly investigated. 

Furthermore, controlled phosphorylation websites 

on transcription factors and other DNA-binding 

proteins revealed a high level of evolutionary 

conservation, implying that they have an important 

biological role. Finally, Lin et al. (2018) observed 

specific control of N/C-terminal phosphorylation 

during resistance development, which is unique to 

bacteria. These controlled phosphorylation 

processes during antibiotic treatment and 

resistance suggest that phosphorylation-mediated 

signaling could be employed as a specific target 

for drug development. In conclusion, Lin et al. 

(2018) provided the most extensive coverage of a 

bacterial phosphoproteome and revealed its 

dynamics under antibiotic disruption. The 

complexity of their phospho-analysis, as well as 

the fact that antibiotic treatment determines 

massive reversible phosphorylation reactions, 

opens up new possibilities for study into potential 

AMR-fighting techniques. Future research work 

should be aimed at understanding the contribution 

of each signaling pathway to resistance 

development. 

 

Ribosomal RNA methylation 

 

The major site of antibiotic action in the bacterial 

cell is the ribosome and is targeted by way of a 

massive and chemically diverse group of 

antibiotics (Poehlsgaard and Douthwaite, 2005). A 

range of these antibiotics has vital functions in 

human and veterinary medicine in the remedy of 

bacterial infections (Long., 2009). Methylation of 

16S ribosomal RNA (rRNA) has recently emerged 

as a new mechanism of resistance to 

aminoglycosides among gram-negative pathogens 

of the Enterobacteriaceae family, as well as 

glucose-non fermentative bacteria such as 

Pseudomonas aeruginosa and Acinetobacter 

species. This is mediated by a recently identified 

category of 16S rRNA methylases, which have 

some similarities to those produced by 

aminoglycoside-producing actinomycetes. All 

parenterally administered aminoglycosides 

currently in clinical use have a significant level of 

resistance due to their presence (Arakawa and Doi, 

2007). 

Nature has devised a highly effective and 

dependable method of avoiding drug binding to the 

ribosome by inserting methyl groups into rRNA at 

specific locations. Surprisingly, methylation is the 

only type of RNA modification that has been 

found to produce antibiotic resistance (Douthwaite 

et al., 2005). This could be explained by the fact 

that these antibiotic resistance determinants 

evolved from various methyltransferases that 

perform so-called housekeeping changes on rRNA.  
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These change enzymes target rRNA clustered at or 

close to the A, P, and E sites, the ribosomal 

subunit interface, and other functionally important 

locations (Chow et al., 2007), including those 

targeted by antibiotics. In the last ten years, a 

plethora of information on antibiotic resistance 

induced by rRNA methylation has been released. 

So far, antibiotic resistance determinants have 

been identified at eight 23S rRNA nucleotides 

(G748, A1067, C1920, A2058, G2470, U2479, 

A2503, and G2535) on the large ribosomal 

subunit. Furthermore, the lack of intrinsic 

methylation can result in lower antibiotic 

susceptibility. Antibiotics attach to specific areas 

of the ribosome and sterically impede interacting 

molecules' binding and/or prevent structural 

rearrangements required for ribosomal function. 

All of the RNA methyltransferases work on RNA 

that is close to or at the binding site of the 

antibiotic against which they impart resistance 

(Long et al., 2009). 

  

Target mutations 

 

Antibiotic resistance is most quickly improved by 

employing markdowns in the affinities of their 

enzymatic targets for antibiotics that inactivate a 

single target and are no longer analogs of the 

substrate. Single amino acid changes may also 

provide large decreases in the affinity of the target 

for the antibiotic in these forms of resistance (for 

example, resistance to rifampicin), leading to 

clinically relevant levels of resistance (Langdon et 

al., 2016). The widespread use and misuse of 

antibiotics place enormous selective pressures on 

the formation of antibiotic-resistant 

microorganisms, and as a result, antibiotic 

resistance is unavoidably improving (Langdon et 

al., 2016). 

Resistance to antibiotics produced from herbal 

products is most commonly caused by the 

acquisition of genes encoding enzymes that 

inactivate the antibiotic, modulate its target, or 

result in the drug's energetic efflux. Lactamases, 

for example, enzymatically cleave the four-

membered lactam ring family, rendering the 

antibiotic ineffective. Because of structural 

changes in the molecule, mutations in the target 

website of motion may also imply that the 

antibiotic penetrates the phone and reaches the 

target website online, but is unable to hinder the 

target's reconstruction. Because the enzymes 

involved in mobile wall synthesis (creation of the 

polymer peptidoglycan) known as penicillin-

binding proteins have a poor affinity for them and 

so are no longer inhibited, enterococci are thought 

to be innately resistant to cephalosporins (Hawkey, 

1998).  

Antibiotic-resistant clinical isolates of bacteria 

show a variety of target changes. The acquisition 

of a gene encoding a new target enzyme with a 

much lower affinity for the antibiotic than the 

regular enzyme causes resistance to a few drugs. 

This pathway is widely used to finish resistance to 

sulfonamides and trimethoprim, which block 

dihydropteroate synthase and dihydrofolate 

reductase, respectively (Sköld, 2001). This 

pathway is also present in methicillin resistance in 

Staphylococcus aureus (Langdon et al., 2016). The 

supply or sources of antibiotic-resistant target 

enzymes are unknown in all of these cases. 

Resistance can also be provided by increased 

production of normal target enzymes (as seen in a 

small number of trimethoprim-resistant clinical 

isolates of enteric bacteria) (Sköld, 2001).  

However, the most common mechanism of 

resistance is the development of altered types of 

normal targets that have improved resistance to 

antibiotics. Such resistance can also involve the 

acquisition of new genes, almost continuously 

carried on plasmids or transposons, that result in 

enzymatic amendment of the everyday goal so that 

it no longer binds the antibiotic [for example, 

resistance to macrolide antibiotics by methylation 

of 23S ribosomal RNA (rRNA)] (Chen et al., 

2013). Alternatively, resistance can also result 

from mutational (or recombinational) occasions 

that lead to the development of antibiotic-resistant 

forms of the regular targets. 
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Efflux pump 

 

Efflux pumps are transport proteins involved in the 

extrusion of hazardous substrates (including all 

clinically applicable antibiotics) out of the cell. 

Multidrug resistance (MDR) efflux pumps are 

applicable factors belonging to the microbial 

repertoire that microorganisms harbor for resisting 

the action of antimicrobial drugs (Piddock, 2006; 

Vila and Martnez, 2008; Li et al., 2015; Jang, 

2016). MDR is found in Gram-positive and Gram-

negative bacteria as well as eukaryotic organisms 

(Bambeke et al., 2000). The efflux mechanism, 

which was first reported as a mechanism of 

tetracycline resistance in Escherichia coli, is one 

of the final resistance mechanisms to be 

recognized (Grossman, 2016). Several plasmids- 

and chromosome-encoded efflux mechanisms, 

both agent- or class-specific and multidrug, have 

been reported in a variety of organisms in the 

intervening years, and they are becoming 

increasingly popular as antimicrobial resistance 

determinants (Poole, 2007). 

Alcalde-rico et al. (2016) identified six factors 

while examining the features of Multi-Drug 

Resistant efflux pumps (MDR Efflux pump) and 

they include; 

To begin with, MDR efflux pumps are found in all 

living cells, including microbes and human 

(Alonso et al., 1999; Alonso and Martinez, 2001; 

Gould et al., 2004; Sanchez et al., 2004). Second, 

the genes that code for them are present in the 

bacterial core genome, implying that all (or almost 

all) members of a species have the same efflux 

pumps (Alonso et al., 1999). Third, they are 

redundant; a single bacterium can have up to ten 

distinct efflux pumps (Crossman et al., 2008). 

Fourth, they are amorphous; each efflux pump can 

export a wide range of substrates, including 

synthetic antibiotics and quinolones (Hernandez et 

al., 2011; Redgrave et al., 2014). Fifth, as 

previously stated, efflux pump expression is 

tightly regulated; this regulation includes both 

local regulators (Randall and Woodward, 2002; 

Luong et al., 2003; Nikaido et al., 2008; De 

Majumdar et al., 2013), which often control the 

expression of a set of genes involved in the 

adaptation to a given ecosystem, such as the 

contaminated host, and world regulators (Randall 

and Woodward, 2002; Luong et (Randall and 

Woodward, 2002; Luong et al., 2003). Sixth, 

antibiotics are not always successful at inducing 

efflux pump expression, but host-produced 

chemicals like bile salts or plant-produced signals 

can also boost MDR pump expression (Rosenberg 

et al., 2003; Prouty et al., 2004; Garca-León et al., 

2014). 

The overexpression of efflux pumps in antibiotic-

resistant mutants can compromise bacterial fitness 

and virulence indicating that the expression of 

these elements is finely regulated and that 

deviations from this regulation, altering their 

expression below or above physiological levels, 

can also impair bacterial physiology and virulence 

(Sanchez et al., 2002). 

Finally, it has been confirmed that when a 

microorganism is stressed, such as during growth 

in a nutrient-poor medium, growth to stationary 

phase, or osmotic shock, expression of the Mex 

structures of P. aeruginosa and the Arab efflux 

gadget of E. coli is highest; these inhospitable 

conditions can also be applied to the scene within 

an infection (Rand et al., 2002). Unstructured 

overexpression of efflux pumps is doubtlessly 

harmful to the microorganism as no longer solely 

will toxic substrates be exported however also 

nutritious and metabolous intermediates may 

additionally be lost. Working with Pseudomonas 

aeruginosa has advised that mutants over 

expressing Mex pumps are much less able to resist 

environmental stress and are much less virulent 

than their wild-type counterparts. As a result, the 

expression of pumps is tightly controlled. 

 

Alternative approaches to overcome AMR 

 

One of the most important strategies for combating 

AMR is the development of novel antimicrobial 

agents. However, when pitted against the 

evolutionary capacity of multidrug resistant 



www.genapp.ba                                                          Genetics&Applications Vol.6|No.1|June, 2022 

7 

 

(MDR) bacteria, the scientific community looks to 

be falling behind in the battle to create alternative 

techniques to combat AMR. Although the 

"pioneering strategy" of discovering completely 

new drugs is a rational approach, the time and 

effort required are significant. Instead, efforts 

could be focused on improving the efficacy of 

existing antimicrobials through combination 

therapies, bacteriophage therapy, antimicrobial 

adjuvants therapy, or the use of nanotechnology. In 

bacteria like Klebsiella pneumoniae, CRISPR-Cas 

system can modulate the physiological process 

implicated in antibiotic resistance. Some research 

have found that using the CRISPR-Cas system can 

prevent bacteria from acquiring antibiotic 

resistance genes. 

Conclusion  

To effectively alleviate existing issues of antibiotic 

resistance in the use of drugs, there will always be 

a need to understand the mechanisms of resistance 

in depth using high molecular technologies. 

However, in this review, it was noted that many 

bacteria use the same or similar mechanism to 

overcome antibiotics that have a similar mode of 

activity, hence once a mechanism of resistance can 

be hacked at any stage, it will resolve resistance to 

a wide range of antibiotics with a similar mode of 

action at the same time. 
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